L-cohomology of Geometrically Infinite Hyperbolic 3-manifolds

نویسنده

  • JOHN LOTT
چکیده

We give results on the following questions about a topologically tame hyperbolic 3-manifold M : 1. Does M have nonzero L-harmonic 1-forms? 2. Does zero lie in the spectrum of the Laplacian acting on Λ(M)/Ker(d)?

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

L2-cohomology of Geometrically Infinite Hyperbolic 3-manifolds

We give results on the following questions about a topologically tame hyperbolic 3-manifold M : 1. Does M have nonzero square-integrable harmonic 1-forms? 2. Does zero lie in the spectrum of the Laplacian acting on Λ1(M)/Ker(d)?

متن کامل

Hyperbolic Dehn surgery on geometrically infinite 3-manifolds

In this paper we extend Thurston’s hyperbolic Dehn surgery theorem to a class of geometrically infinite hyperbolic 3-manifolds. As an application we prove a modest density theorem for Kleinian groups. We also discuss hyperbolic Dehn surgery on geometrically finite hypebolic cone-manifolds.

متن کامل

Geometrically Infinite Surfaces in 3–manifolds with Hyperbolic Fundamental Group

We prove a partial generalization of Bonahon’s tameness result to surfaces inside irreducible 3–manifolds with hyperbolic fundamental group. Bonahon’s result states that geometrically infinite ends of freely indecomposable hyperbolic 3–manifolds are simply degenerate. It is easy to see that a geometrically infinite end gives rise to a sequence of curves on the corresponding surface whose geodes...

متن کامل

Hyperbolic Cone-manifolds, Short Geodesics, and Schwarzian Derivatives

With his hyperbolic Dehn surgery theorem and later the orbifold theorem, Thurston demonstrated the power of using hyperbolic cone-manifolds to understand complete, non-singular hyperbolic 3-manifolds. Hodgson and Kerckhoff introduced analytic techniques to the study of cone-manifolds that they have used to prove deep results about finite volume hyperbolic 3-manifolds. In this paper we use Hodgs...

متن کامل

Rigidity of geometrically finite hyperbolic cone-manifolds

In a recent paper Hodgson and Kerckhoff [HK] prove a local rigidity theorem for finite volume, 3 dimensional hyperbolic cone-manifolds. In this paper we extend this result to geometrically finite cone-manifolds. Our methods also give a new proof of a local version of the classical rigidity theorem for geometrically finite hyperbolic 3-manifolds.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997